

Photoinsertion of dioxygen in *trans*- $[Co(\text{tet-a})(NO₂)₂]⁺$ and trans- $[Co(\text{tet-b})(NO₂)₂]⁺$ in acetonitrile: a laser flash photolysis study

P. Ramamurthy

Department of Inorganic Chemistry, School of Chemirty, University of Madras, Madras 600 025 (India)

(Received October 9, 1989; revised June 1, 1990)

The reversible reaction of dioxygen with solutions of cobalt complexes which results in monomeric dioxygen complexes, which serve as a model system for haemoglobin, has been of interest for some time [l-3]. Irreversible reactions of dioxygen are also important to biological systems [4]. Cobalt(I1) complexes generally form 2:1 μ -peroxo bridged complexes [4]. Formation of this is preceded by formation of a 1:1 superoxo complex $[4, 5]$. There have been only a few reports of the reaction of $Co^H(N₄)$ complexes with oxygen [6-8]. Earlier, we reported the formation of mononuclear and dinuclear superoxo complexes of cobalt(II1) as intermediates, during the formation of the product, peroxo complex, of a series of diacidocobalt(III)-amine complexes by conventional flash photolysis technique [5, 10, 11]. Here we report the fastest oxygenation reaction of $Co^H(N₄)$ complexes by laser flash photolysis technique.

Experimental

The title complexes were prepared by the literature reported [12] procedures and the purity of the complexes were ascertained by comparing the absorption maxima and molar absorptivity of the d-d and charge-transfer bands. Spectral grade acetonitrile (Fluka) was used. The complexes were photolysed at 355 nm using a Quanta Ray DCR-10 Nd-YAG laser and a Gould 4500 Biomation digital oscilloscope was used to store the signals. The signals were averaged for 4 to 16 shots and a 1 cm path length flow cell was used. A 300 W xenon lamp was used as the monitoring source. The laser and monitoring beams were arranged in a right angled geometry. The kinetic data analysis was carried out using FORTRAN software in a PDP11/23 minicomputer. The straight lines were fitted by the linear leastsquares program.

Results

On photolysis at 355 nm, the title complexes show absorption growths from 350-600 nm in air-equilibrated acetonitrile with the maximum at 520 nm. The absorption growths at 500 nm obey first order kinetics and the pseudo first order rate constants are 1.02×10^4 and 1.32×10^4 s⁻¹ for tet-a and tet-b complexes, respectively (Fig. $1(a)$). The absorbances also decay in 10 ms full sweep and the decays also obey first order kinetics (Fig. $1(b)$). The rate constants are 2.1×10^3 and 1.2×10^3 s⁻¹ for tet-a and tet-b complexes, respectively. These decays are also observed with photolysis using a conventional flash photolysis spectrometer. Transient absorptions are also seen around 700 nm using a conventional flash photolysis spectrometer in 20 ms full sweep, but the signals are weak and for the same reason the signals could not be seen with a laser flash photolysis spectrometer. The transient absorption at 700 nm also obeys first order kinetics (Fig. l(c)) and the rate constants are 3.5×10^2 and 3.1×10^2 s⁻¹ for teta and tet-b complexes, respectively. In argon saturated medium transients are not observed confirming that the transient absorptions are due to the reaction between the photochemically generated cobalt(I1) complex and dissolved oxygen.

Discussion

From the literature [13] it is observed that only mononuclear superoxo complexes absorb around 500 nm and hence the transient growth is due to the formation of a mononuclear superoxo complex. The second order rate constant for the formation of the mononuclear superoxo complex of tet-a ligand is 1.63×10^{7} M⁻¹ s⁻¹; it is estimated by taking the concentration of dissolved oxygen in acetonitrile [14] at 25 °C as 1.6×10^{-3} M. Due to this high reactivity it has not been possible to observe the formation of mononuclear complexes found in earlier studies [15] by other researchers. Transient absorption spectra recorded at 200 μ s after flash show a maximum at 520 nm, and a broad absorption around 700 nm is due to the formation of a dinuclear superoxo complex [16] (Fig. 2).

Steady photolysis of the complexes in air-equilibrated acetonitrile results in spectral changes with a shoulder around 460 nm and a maximum at 350

nm which are similar to those of the axial nitro dinuclear μ -peroxo cobalt(III) complexes with quadridentate macrocyclic ligands [8]. These above experimental observations are corroborated in the following scheme.

$$
[Co(N_4)(NO_2)_2]^+ \xrightarrow[CTTM]{h\nu} [Co(N_4)(NO_2)]^+ + NO_2
$$

\n
$$
[Co(N_4)(NO_2)]^+ + O_2 \longrightarrow [Co(N_4)(NO_2)O_2]^+
$$

\n
$$
1 + [Co(N_4)(NO_2)_2]^+ \longrightarrow [(NO_2)(N_4)CoO_2^- Co(N_4)(NO_2)_2]^2^+
$$

Fig. 1. (a) First order kinetic fit of 500 nm transient growth. Insert: growth trace; 20 mV/div, 20 μ s/div. Due to the formation of mononuclear superoxo complex. (b)First order kinetic fit of 500 nm transient decay. Insert: decay trace; 20 mV/div, 1 ms/div. Due to the formation of dinuclear superoxo from mononuclear superoxo complex. (c) First order kinetic fit of 700 nm transient decay. Insert: decay trace; 5 mV/div, 2 ms/div. Due to the formation of dinuclear peroxo complex from dinuclear superoxo complex.

$$
2 \longrightarrow [(NO_2)(N_4)CoO_2^{2-}Co(N_4)(NO_2)]^{2+} + NO_2 \\ 3
$$

 N_4 = tet-a or tet-b

A few mononuclear stable cobalt-amine complexes have been reported where the amine is bulky, but mostly they dimerise to result in the peroxo complex [17]. Due to the high reactivity of quadridentate macrocyclic ligand complexes, we are not able to observe well separated steps, as we observed in the case of cobalt(III) -amine complexes $[10]$, for the formation of mononuclear and dinuclear superoxo complexes.

In compound 2 a seven coordinated cobalt centre is introduced and there has been evidence for an

Fig. 2. Transient absorption spectrum recorded at 200 μ s after flash for (\bullet) tet-a and (\times) tet-b complexes.

associative substitution at the cobalt(II1) centre when electron withdrawing groups like $NO₂$ ⁻ are coordinated [18]. The redox couple of superoxo-peroxo is around 1.0 V and mild reducers like NO_2^- , $SO_3^$ and $Fe²⁺$ are known to reduce the superoxo bridge to a peroxo bridge [19]. Enhancement of reduction rates of superoxo-to-peroxo by the addition of nitrite ion has been observed.

In summary, the $Co^H(N₄)$ complexes undergo an oxygenation reaction resulting in the dinuclear peroxo complex as the final product via mononuclear superoxo and dinuclear superoxo complexes as intermediates.

Acknowledgements

This investigation was supported by the UGC COSIST assistance programme. The author expresses his deep appreciation to Professor P. Natarajan for his keen interest, encouragement and useful discussions.

References

- 1 R. D. Jones, D. A. Summerville and F. Basolo, Chem. Rev., 79 (1979) 139.
- 2 F. Basolo, B. M. Hoffman and J. A. Ibers, Acc. Chem. *Res., 8* (1975) **384.**
- L. Vaska, Ace *Chem. Res.,* **9** (1976) 175.
- E. C. Niederhoffer, J. H. Timmons and A. E. Martell, *Chem. Rev., 84* (1984) 137.
- P. Ramamurthy and P. Natarajan, J. Chem. Soc., Chem. 5 *Commun.,* (1985) *1554.*
- J. F. Endicott and B. Durham, in G. A. Melson (ed.), 6 *Coordination Chew&y of Macrocyclic Compounds,* Plenum, New York, 1979.
- **7** R. Dreos, G. Tauzhor, G. Costa and M. Green, J. *Chem. Sot.,* (1975) 2329.
- a B. Bosnich, C. K. Poon and B. L. Tobe, *Inorg. Chem.*, *5* (1966) 1514.
- 9 P. Ramamurthy and P. Natarajan, *Inorg. Chem.*, 52, (1986) *3554.*
- 10 P. Natarajan and P. Ramamurthy, Proc. *Indian Natl. Sci Acad., Part A, 52* (1986) *865.*
- 11 P. Ramamurthy, A. Radhakrishnan, S. Vijayaraghava and P. Natarajan, *Indian J. Chem., 29A* (1990) 1.
- 12 P. 0. Whimp and N. F. Curtis, J. *Chem. Sot. A,* (1966) 867.
- 13 A. B. P. Lever and H. B. Gray, *Act. Chem Res., 11* (1978) *348.*
- 14 J. F. Cotezee and I. M. Kolthoff, J. *Am. Chem. Sot., 79* (1957) 6110.
- 15 Chung-Lai Wong, J. A. Switzer, K. P. Balakrishna and J. F. Endicott, J. *Am. Chem. Sot., 102* (1980) 5511.
- 16 Y. Sasaki, J. Fujita and K. Saito, *Bull. Chem. Soc. Jpn.*, *44* (1971) 3373.
- 17 V. M. Miskowski, J. L. Robbins, I. M. Treitel and H. B. Gray, Inorg *Chem., 14* (1975) 2318.
- 18 (a) S. Asperger and C. K. Ingold,J *Chem. Sot.,* (1956) *2862;* (b) C. H. Langford and H. B. Gray, *Ligand Substitution Processes,* Benjamin, New York, 1966, p. 71.
- 19 D. L. Duffy, D. A. House and J. A. Weil, J. Inorg. Nucl. *Chem., 31* (1969) *2053.*